field-programmable gate array - significado y definición. Qué es field-programmable gate array
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es field-programmable gate array - definición

INTEGRATED CIRCUIT DESIGNED TO BE CONFIGURED BY A CUSTOMER OR A DESIGNER AFTER MANUFACTURING
Field programmable gate array; FPGA; FPGAs; Field Programmable Gate Array; Programmable gate array; Fpga; Field programmable logic array; Field-Programmable Gate Array; Programmable Gate Array; Field-programmable gate arrays; FPGA board
  • Stratix IV]] FPGA from [[Altera]]
  • D-type flip-flop]])
  • A Spartan FPGA from [[Xilinx]]
  • A [[Xilinx]] Zynq-7000 All Programmable System on a Chip

field-programmable gate array         
<hardware> (FPGA) A gate array where the logic network can be programmed into the device after its manufacture. An FPGA consists of an array of logic elements, either gates or lookup table RAMs, flip-flops and programmable interconnect wiring. Most FPGAs are reprogrammable, since their logic functions and interconnect are defined by RAM cells. The Xilinx LCA, Altera FLEX and AT&T ORCA devices are examples. Others can only be programmed once, by closing "antifuses". These retain their programming permanently. The Actel FPGAs are the leading example of such devices. Atmel FPGAs are currently (July 1997) the only ones in which part of the array can be reprogrammed while other parts are active. As of 1994, FPGAs have logic capacity up to 10K to 20K 2-input-NAND-equivalent gates, up to about 200 I/O pins and can run at clock rates of 50 MHz or more. FPGA designs must be prepared using CAD software tools, usually provided by the chip vendor, to do technology mapping, partitioning and placement, routing, and binary output. The resulting binary can be programmed into a ROM connected to the FPGA or downloaded to the FPGA from a connected computer. In addition to ordinary logic applications, FPGAs have enabled the development of logic emulators. There is also research on using FPGAs as computing devices, taking direct advantage of their reconfigurability into problem-specific hardware processors. Usenet newsgroup: news:comp.arch.fpga. (1997-07-11)
Field-programmable gate array         
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturinghence the term field-programmable. The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC).
FPGA         
Field Programmable Gate Array (Reference: RL)

Wikipedia

Field-programmable gate array

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence the term field-programmable. The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic design automation tools.

FPGAs contain an array of programmable logic blocks, and a hierarchy of reconfigurable interconnects allowing blocks to be wired together. Logic blocks can be configured to perform complex combinational functions, or act as simple logic gates like AND and XOR. In most FPGAs, logic blocks also include memory elements, which may be simple flip-flops or more complete blocks of memory. Many FPGAs can be reprogrammed to implement different logic functions, allowing flexible reconfigurable computing as performed in computer software.

FPGAs have a remarkable role in embedded system development due to their capability to start system software development simultaneously with hardware, enable system performance simulations at a very early phase of the development, and allow various system trials and design iterations before finalizing the system architecture.